Unit 40 Word Problems Using Fractions

1. An $8 \frac{3}{4}$ foot board must be shortened to $6 \frac{1}{3}$ feet. How much must be removed?

Unknown: length to be removed
Given:
current length $=8 \frac{3}{4}$ feet
new length $=6 \frac{1}{3}$ feet
This answer makes sense because

$$
2 \frac{5}{12}+6 \frac{4}{12}=8 \frac{9}{12}=8 \frac{3}{4}
$$

Solution:
removed = current length - new length

$$
=8 \frac{3}{4} \text { feet }-6 \frac{1}{3} \text { feet }
$$

LCD is $4 \times 3=12$

$$
\begin{aligned}
& 8 \frac{3}{4}=8+\frac{3 \times 3}{4 \times 3}=8+\frac{9}{12}= 8 \frac{9}{12} \\
&-6 \frac{1}{3}=6+\frac{1 \times 4}{3 \times 4}=6+\frac{4}{12}=-\frac{-6 \frac{4}{12}}{2 \frac{5}{12} \text { feet }}
\end{aligned}
$$

2. Hamburger costs $\$ 2.48$ per pound. How much will it cost to make 25 quarter-pound hamburgers?

Unknown:

pounds required
cost of required hamburger
Given:
hamburger costs $=\$ 2.48$ per pound hamburgers per pound $=4$ hamburgers needed $=25$

This answer makes sense because $(\$ 2.50$ per pound)(6 pounds) $=\$ 15.00$

Solution:

pounds required $=\frac{\text { hamburgers needed }}{\text { hamburgers per pound }}$

$$
=\frac{25 \text { hamburgers }}{4 \text { hamburgers per pound }}=6 \frac{1}{4} \text { pounds }
$$

$$
\text { cost }=(\text { pounds required })(\text { cost per pound })
$$

$$
=\left(6 \frac{1}{4} \mathrm{lbs} .\right)(\$ 2.48 \text { per pound })
$$

$$
=\left(\frac{25}{4}\right)\left(\frac{\$ 2.48}{1}\right)=\frac{\$ 62.00}{4}=\$ 15.50
$$

3. Ted wants to frame a window which is $7 \frac{3}{4}$ feet long and $5 \frac{3}{4}$ feet wide.

How many $6 \frac{1}{2}$ foot boards will he need?

Unknown: boards required
Given: boards are $6 \frac{1}{2} \mathrm{ft}$.

Solution:
number of boards $=\frac{\text { perimeter }}{\text { board length }}=\frac{p}{6 \frac{1}{2}}$

$$
\begin{gathered}
P=|+w+|+w \\
P=7 \frac{3}{4}+5 \frac{3}{4}+7 \frac{3}{4}+5 \frac{3}{4}=24 \frac{12}{4}=27 \mathrm{ft} \\
\text { boards }=\frac{P}{6 \frac{1}{2}}=\frac{27}{6 \frac{1}{2}}=\frac{27}{\frac{13}{2}}=\left(\frac{27}{1}\right)\left(\frac{2}{13}\right)=\frac{54}{13}=4 \frac{2}{13} \mathrm{ft}
\end{gathered}
$$

This answer makes sense because 4 boards are $4 \times 6.5=26$ ', and 26 feet is 1 foot short of the required 27 feet.

