Inferential statistics is very important so Fred and I made up this special review. Use it with the formula review beginning on the next page. Don't forget to look at cumulative review chapters 25 - 27. ## **Executive Summary of Inferential Statistics** | Being Tested | Sampling Distribution is Known | | | Sampling Distribution is
Unknown | |--|--|--|--|--| | A Transport Service Se | | rametric Tests of
and Proportion
interval and Rat | Nonparametric Tests of the
Median Using
Ordinal Data | | | | use with | | | use with | | | Normal Po
Large
Sample
σ is known | pulation
Small
Sample
σ is unknown ¹ | Skewed Population
Large
Sample
σ is known | Skewed Populations Small Sample | | 001- | or unknown | | or unknown | n) professi elean myd aspros. Camb | | One Sample | Z | t | Z | Sign Test | | Two Independent
Samples | z | t | f a meen i <mark>z</mark> cifferent
al fer direction | Mann-Whitney Test | | Two Dependent Samples (paired difference test) | z | t sma | r a mean i x orienent fro
or. Dividing or by 2. | Sign Test | | 3 or More Independent
Samples (ANOVA) | F | F 7 - 0 = 1 | Not
Applicable | Kruskal-Wallis Test | | | 1. If σ is known | n, z may be used in | place of t. | Nonparametric Tests of Nominal Data Using χ^2 | | One Categorical
Variable | $\frac{2}{(E_2 - \frac{1}{4})^2}$ | | 3 X − y X & | Goodness of Fit Test | | Two Categorical
Variables (Statistical
Dependency) | $I_{1r} + r_{12} - I_{2r}$ | (c | SS (25) | Contingency Tables |