X. Darin wants to compare assembly time of 30-milligram parts using method A and method B. It is not known whether these populations are approximately normal with the same variance. Use the Mann-Whitney test to determine at the .05 level of significance whether these samples come from populations with equal medians.

Time to Assemble 30-Milligram Parts in Seconds											
Method A	90	95	104	88	91	94	87	102	96	98	101
Method B	95	102	93	105	96	99	100	103	91	97	106

	Rank F		Ranked Scores		Rank		Ranked Scores		Rank			Ranked Scores		
	Ordered Array and Assembly Method		Method A	Method B	Ordered Array and Assembly Method			Method A	Method B	Ordered Array and Assembly Method			Method A	Method B
1.	87 88	A	1 2		8. 9.	95 95	A B	8.5	8.5	15. 16.	100 101	B A	16	15
3.	90	Α	3		10.	96 96	A B	10.5	10.5	17. 18.	102 102	A B	17.5	17.5
4. 5.	91 91	A B	4.5	4.5	11. 12.	97	В	7. 18.	12	19.	103	В		17.5
6. 7.	93 94	B A	7	6	13. 14.	98 99	A B	13	14	20. 21.	104 105	A B	20	21
										22.	106	В		22
Subt	Subtotals 17.5 10.5						32.0	45.0				53.5	94.5	

$$R_{1}$$
= 17.5 + 32.0 + 53.5 = 103

$$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1$$

$$= 11(11) + \frac{11(11+1)}{2} - 103$$

$$= 121 + 66 - 103$$

$$= 84$$

$$\mu_U = \frac{n_1 n_2}{2} = \frac{11(11)}{2} = 60.5$$

$$\sigma_U = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$$

$$= \sqrt{\frac{11(11)(11 + 11 + 1)}{12}}$$

$$= \sqrt{\frac{2,783}{12}}$$

$$= 15.23$$

$$Z = \frac{U - \mu_U}{\sigma_U}$$

$$= \frac{84.0 - 60.5}{15.23}$$

$$= 1.543$$

This two-tail problem has a z of ± 1.96 for the .05 level of significance. H₀ is accepted because 1.54 < 1.96. Median assembly times are equal.