X. Darin wants to compare assembly time of 30-milligram parts using method A and method B. It is not known whether these populations are approximately normal with the same variance. Use the Mann-Whitney test to determine at the .05 level of significance whether these samples come from populations with equal medians. | Time to Assemble 30-Milligram Parts in Seconds | | | | | | | | | | | | |--|----|-----|-----|-----|----|----|-----|-----|----|----|-----| | Method A | 90 | 95 | 104 | 88 | 91 | 94 | 87 | 102 | 96 | 98 | 101 | | Method B | 95 | 102 | 93 | 105 | 96 | 99 | 100 | 103 | 91 | 97 | 106 | | | Rank F | | Ranked Scores | | Rank | | Ranked Scores | | Rank | | | Ranked Scores | | | |----------|--------------------------------------|--------|---------------|-------------|--------------------------------------|----------|---------------|-------------|-------------|--------------------------------------|------------|---------------|-------------|-------------| | | Ordered Array and
Assembly Method | | Method
A | Method
B | Ordered Array and
Assembly Method | | | Method
A | Method
B | Ordered Array and
Assembly Method | | | Method
A | Method
B | | 1. | 87
88 | A | 1 2 | | 8.
9. | 95
95 | A
B | 8.5 | 8.5 | 15.
16. | 100
101 | B
A | 16 | 15 | | 3. | 90 | Α | 3 | | 10. | 96
96 | A
B | 10.5 | 10.5 | 17.
18. | 102
102 | A
B | 17.5 | 17.5 | | 4.
5. | 91
91 | A
B | 4.5 | 4.5 | 11.
12. | 97 | В | 7. 18. | 12 | 19. | 103 | В | | 17.5 | | 6.
7. | 93
94 | B
A | 7 | 6 | 13.
14. | 98
99 | A
B | 13 | 14 | 20.
21. | 104
105 | A
B | 20 | 21 | | | | | | | | | | | | 22. | 106 | В | | 22 | | Subt | Subtotals 17.5 10.5 | | | | | | 32.0 | 45.0 | | | | 53.5 | 94.5 | | $$R_{1}$$ = 17.5 + 32.0 + 53.5 = 103 $$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1$$ $$= 11(11) + \frac{11(11+1)}{2} - 103$$ $$= 121 + 66 - 103$$ $$= 84$$ $$\mu_U = \frac{n_1 n_2}{2} = \frac{11(11)}{2} = 60.5$$ $$\sigma_U = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$$ $$= \sqrt{\frac{11(11)(11 + 11 + 1)}{12}}$$ $$= \sqrt{\frac{2,783}{12}}$$ $$= 15.23$$ $$Z = \frac{U - \mu_U}{\sigma_U}$$ $$= \frac{84.0 - 60.5}{15.23}$$ $$= 1.543$$ This two-tail problem has a z of ± 1.96 for the .05 level of significance. H₀ is accepted because 1.54 < 1.96. Median assembly times are equal.