- IX. Three computer component assembly methods were compared by Insel Corporation. Employee efficiency was based upon production time and product quality.
 - A. Use ANOVA analysis to test at the .05 level of significance whether mean employee efficiency of these assembly methods are equal.

	Employee Effici	Row Totals Required		
	Method 1	Method 2	Method 3	for Calculations
	Score	Score	Score	
	4	6	8	
	6	7	8	
	7	4	9	8
	<u>Z</u>	Z	9	
$\frac{\sum X_T}{(\sum X_T)^2}$				
$(\Sigma X_T)^2$				
n				
$(\sum X_T)^2$				
$\sum x^2$				

$$SS_T = \sum \left[\frac{(\sum x_T)^2}{n} \right] - \frac{(\sum X)^2}{N} \qquad SS_E = \sum X^2 - \sum \left[\frac{(\sum x_T)^2}{n} \right] \qquad SS_{\mathsf{TOTAL}} = \sum X^2 - \frac{(\sum x)^2}{N}$$

B. Determine at the .01 level of significance whether there is a difference in performance of those who received teaching methods (treatments) 1 and 3.