Quick Questions 13 Large Sample Hypothesis Testing

- I. Complete the following chart and questions.A. Type I error is called _____ error.
 - B. Type II error is called _____ error.
 - C. When z calculated from sample data is beyond the critical value (less than for left tail problems and greater than for right tail problems), the null hypothesis is

Er	ror Summary		
Decision Concerning Null Hypothesis	Nature's True State		
	H ₀ is true	H _o is false	
Accept H ₀			
Reject H ₀			

- D. T F By setting the confidence level to 99%, we are trying to assure that the alternate (research) hypothesis will not be easily accepted.
- II. Make these tests using the 5-step approach to hypothesis testing.
 - A. A light bulb warranty states average bulb life is at least 20,000 hours. A sample of 49 bulbs had an average life of 19,000 hours. The population standard deviation is 1,400 hours. Test the warranty claim to the .01 level of significance.

For People Using Statistics Software							
Life of Light Bulbs (Thousands of Hours)							
19	17	18	19	19			
20	19	21	20	22			
20	19	19	21	19			
19	18	19	17	19			
19	19	19	16	20			
19	20	17	19	18			
18	18	21	17	18			
20	21	18	16	21			
17	19	20	22	19			
20	18	20	18				

B. Average weekly manufacturing earnings were \$480 and the standard deviation was \$72. A recent sample of 36 resulted in a mean of \$450. The standard deviation has not changed. Test to the .05 level whether average weekly earnings changed.

For People Using Statistics Software								
Weekly Manufacturing Earnings								
500	520	490	580	470	475			
565	610	490	420	480	400			
445	580	300	440	450	480			
400	420	480	410	440	430			
390	480	390	460	460	450			
420	385	350	500	360	280			